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1. Introduction

Using a local balénce law developed by Gurtin [5] for the
cohesive zone, we give a system of equations governing the
temperature rise around a fast running crack. We note that the
effect of surface temperature cannot be neglected for a fast
running crack, and we discuss tl.: equations under simplifying
assumptions. 1In particular, assuming that the surface temperature is
mach higher than the surrounding temperature, we arrive at a simple

solution in closed form. This solution agrees with experimental

results of Fuller, Fox, and Field [2] for polymethyl methacrylate

showing that the temperature rise at the crack tip is independent

of crack speed.
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2. Theory

Consideration will be restricted to a semi-infinite crack
in an infinite plate stressed symmetrically with respect to

he plane of the crack,

I ' We assume that the crack

Lt is moving with constant

___.1._ . ——X velocity v in the
° z(t z(t)+

direction-of negative x.

[ ]
I (see the Figure.)

Neglecting thermo-mechanical coupling we have the following energA
balance law governing the temperature rise 0 = 06(x,y,t) away

from the crack:

2 2
30 376 ., 3786 4
pc 5+ = k{—= + —5) (2.1) ]

where. p is the density, k conductivity and ¢ specific heat.
Let 2(t) 1label the end of cohesive zone and 4 itslength, so
that z(t) + L gives the position of the crack tip.

Since the work rate £(x,t) due to plastic work in the
cohesive zone will be symmetric about the plane of the crack, there
will be no heat conduction across the line {y = 0, x < z(t)};
hence

20 |
X §5 = 0, y =0, x < z(t). (2.2) ﬂ

We allow the crack surface to have (surface) temperature rise

2(%x,t) (> ), continuous in x(> z(t)).
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According to a recent theory of Gurtin [5], the

local balance law in the cohesive regioh is given in the form

ée=h+ g8, (2.3)
where h is the heat flow per unit surface into the crack
surface from the body (cf., e.g., (5.6) in [5]).

Using (2.3) we have (by routine assumptions and

de:ivatiéns)

'gé(x:t)=h+—f"('§‘£l" Yy=90, x> z(t)s

- (2.4)
kg—-;='h, y = 0%, x> z(t),
where B8 is a constant. We assume that h has the form
h = a(0-~9), | (2.5)

where a (= constant) is the surface conductivity. We note
that, in (2.4); f(x,t) = 0 at x> z(t) + 4, and we neglect
hezat loss into the surrounding air.l In Gurtin [5], the‘energy
of the newly formed free surfaces is assumed to be constant
when these surfaces are expoéed to a constant environmental
temperature. For a fast running crack, however, this assumption
is redundant.

Assuming steady-state conditions and introducing the moving

coordinate £ = x - z(t), the equations (2.1)-(2.5) become

l

See DO11 {4].
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2 2
pov 2 =x@2+2Y), y>0, -@wm<ctc
dE oy
k%%=0, y=90, £<0,
(2.6)
2vi-ate-0) + I, yao, g5 0,
k%—%=a(e-¢), y=0*,§>0,
where g(€) := £(€ + z(t),t) is the work rate in the cohesive

region. By (2.6)3 4 Ve have
L

-1 g
b 3% =3 + I (2.7)

where b = % « We note B is the heat required to raise
the temperature of a unit surface by one degree (ca1,€m2/ ).
We expect $ to be negligible small, The dimensionless constant
b, however, is approximately
6.1x10%%B - 2024 Aluminium Alloy
5xB

1.4x10%x8 - 6A1-4v Titanium Alloy

1,7x10 Mild steel

5.0x10%x8 - Polymethyl Methacrylate (k=5x10">/emy/°c/s)
for v = 500 m/sec. Thus, even for B as small as 10~ ~1O'8ca1/
2,0 D -X:]
4a t
cm”/ 7 C, we may not neglect the term b 3y compare o ¥y in

(2.7) if the crack velocity is as large as 500 ny's.

We will discuss the temperature rise around a fast running crack

using the above equations, but under certain simplifying assumptions.
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3. Analysis and Discussions

Here we assume that 6 << ® on the crack surface.

(Experi-

ments on polymethyl methacrylate show the temperature rise on

the crack faces (~lum in depth) to be about 500 K throughout

the velocity range 200~650 m/s [2], in contrast, the maximum

temperature rise at a distance of about 0.2~lmm from the crack

path, is only 0.1l~1 K [3].)

Under this assumption the equations (2.7) become

pcv%g-=k(-:—z-g+-z—}%), Yy>0, - < § < o,
k-a—g = 0, y=0, ELO
%v%:—a¢+9§-§)—, y =0, €> 0,
k%—i:—mp, y=of, g5 o0,
We assume that © and ¢ tend to zero at infinity. We then

have solutions in the form

,:Séf—,l - 'g%(’%—t)dt Lo,
a(g) = zié%,l e %%(E-t)dt 0< E< 2,
O £ <0,
8(E,y) = :D 90() g(e-t,y)at,
wherc
K(x,y) =:% eaxxo(a »@), a= g




at the crack tip (n = 0)

with K, the modified Bessel function of the second kind.

Using the Dugdale model, the work rate due to plastic work

is given in the forml-

_ as (x)
g(x) = % ax v

where % is the yield stress and § the separation distance.

Thus the temperature rise o(3) for & > L Dbecomes
200 as(t) 2a
- La <t - e y)
o(8) = (e VB I 2Lt Fare VP
, (3.1)
_2ab as (x) 204 )
= (e ve I o dx vB xdx)e va(g ~4)

and thus, if 20l/vB is negligibly small, (3.1) is approximately,
o 8(L) - 3:‘7!1
w(g) ¥ —5— e B

B ’ (3.2)

where 1 = £-4.

This result shows, interestingly, that the temperature rise

is proportional to nob(&) with
2

constant of proportionality is 1/8.

lThe work rate g(€) for the Dugdale model in small plane strain
is computed by Levy and Rice [1] as
2, 2
4(1-v-)o v 7L
g(g) = 0 4n A ocect.
1 - JE/L

2

Note that we have assumed plastic work in the cohesive
zone is completely converted into heat. (This is gener-
ally true of the energy expended in plastically deforming
a metal.) For partial conversion g should be scaled
down . gppropriately.
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Note that ¢ depends on v only through a dependence
on m/v. For the point x = y = 0, say, occupied by the tip at
t =0, 7 will be the distance fram the tip at time t = 1n/v.
Thus, by (3.2), the temperature rise at this point should depend
only on time; it should be indepéndent1 of v. This result is in
agreement with experimental result of Fuller, Fox, and Field (2],
who found that the temperature rise at a fixed point on the axis
of the crack was approximately independent of crack velocity.
In fact, they note that "the results combined to give a temperature
rise of approximately 500 K throughout the velocity range studied
(200~650 m/s) ."

For the fixed point x =y = 0, (3.2) gives
20

cb(L) - =t
PV - M 8
@ 8 e
and hence ¢ has the form
Ll Ae-Bt ’

where A = oob(L)/B and B = -2qa/8.

The data of [2], when averaged, give

v = 457 K at t = 1lOus
® = 361 K at t = 20us
© = 304 K at t = 35us.
Using the values at t = 10us and t = 35us, we find that
A= 5.38X102K,
B = 1.63x10%sec™!.

1Here we follow Levy and Rice [l1] and assume that
o 6(L) is independent of v, Levy and Rice [l1], however,
found that this temperature rise is proportional to /v.

o TEm—————r
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This gives ¢ = 388 K at t = 20us as compared to
the value o = 361 K of [2]. Further, we find that ¢ = 538 K
at t = C; that is, the temperature rise at the crack tip is
538 K. For the values 4 = 1 mm (which we feel is an upper
bound for 4) and v = 200 n/s, we find that the dimensionless
constant '

2l/vg = 4B/v,
which we neglected indefining (3.2), has the approximate value

of 0,08.
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